ACC for AMS 02 M. Fernandez-Garcia, W. Karpinski, K. Lübelsmeyer, St. Schael, R.Siedling, W. Wallraff A Photo Multiplier PM-Support Light Gades Optical Connector Bundle Support Innar Fiber Bundle Support AMS TIM, March 31 - April 5, 2003 @CERN

ACC for AMS02

Scintillator barrel of 16 scintillators readout by WLSF coupled to 16 photomultipliers.

Scintillator: Kuraray (SCSN-81), 8 mm thickness

WLSF: Kuraray Y-11(200) M

PM: Hamamatsu fine mesh R5946

	AMS1	AMS2
Scintillator	BC-414	Kuraray SCSN-81
Thickness	10 mm	8 mm
λ _{Max}	392 nm	440 nm
Decay time	1.8 ns	2.5 ns
Att length	1 m	1.40m
WLSF	Kuraray Y-11(200)M	
Absorption	350-470 nm	
λ _{Emission}	476 nm	
Att. Length	>3.5 m	
Clear Fiber		BCF-98
Att. Length	_	>3m
		Double Cladded
PM	Hamamatsu R5900	Hamamatsu R5946
Spectral response (QE>10%)	300-500 nm, 420 nm Max	320-520 nm, 420 nm
Туре	"Metal channel Dynode"	Fine mesh
# Dynodes	10	16
Gain @ 0 Tesla, 0 deg	2x106@900V	1x106@2000V
Gain @ 0.3 Tesla, 0 deg	Useless above 0.3T	0.9x106@2000V

AMS TIM, March 31 - April 5, 2003 @CERN

Methods to calculate PM gain

• Ideal PM:

$$\begin{aligned} N_a &= N_{pe} \cdot G \\ N_{pe} &\text{ is poisson distributed} \end{aligned} \Rightarrow G = \frac{\sigma_a^2}{N_a} \\ \Rightarrow \sigma_a &= \sqrt{N_{pe}} \cdot G$$

- Width can be the Landau width (overstimates G) or LED width at MOP
- Gain can be calculated from a single electron entering the dynode chain

RWTH Physics AC-I

AMS TIM, March 31 - April 5, 2003 @CERN

Signal budget

• Small amplifier AD8055 (input \times 3) at the input of the SFEA (5 mA on \pm 5V)

• 75% signal to the discriminator 20% signal to history channel 5% signal to the ADC

Physics AC-I

AMS TIM, March 31 - April 5, 2003 @CERN

Light coupling performance

- Clear Fibers used to reach PMs on the 0.2 T region.
- Two prototypes built and tested. Good geometrical matching between fibers achieved by using precision pins
- Preliminary results show 15% loss/connector Namely:

10% reflectivity loss,5% coupling inefficiency

RWTH Physics AC-

AMS TIM, March 31 - April 5, 2003 @CERN

